prof. Dr. Ing. Zdeněk Hanzálek

Theses

Dissertation theses

Data-driven Scheduling Algorithms

Level
Topic of dissertation thesis
Topic description

Execution of many systems, such as time-triggered real-time embedded systems (TTRES) in automated cars, follows a predefined static schedule found by a complex scheduling algorithm. However, the traditional TT paradigm is too rigid and fails to account for the evolution of the TTRES configuration during its life cycle. Through our experience, we believe that the current scheduling algorithms for TTRES fail: (i) to accommodate changes while devising a gradual evolution of the TT schedule, and (ii) to enhance the search strategy with the information extracted from related scheduling problems and instances. Algorithms addressing shortcomings (i) and (ii) are driven by the data whose character and quality impact the parameters, constraints, and criteria of the scheduling problem at hand. We believe that these two issues represent significant untapped potential in scheduling algorithms. We aim to unlock this potential by developing algorithms enhanced with machine learning that are scalable and able to handle uncertain parameters.

Scheduling algorithms for energy-efficient production

Level
Topic of dissertation thesis
Topic description

The considered basic problem is RCPSP (Resource-Constrained Project Scheduling Problem). It is characterized by a set of activities to be scheduled. The order of these activities is partly defined by precedence constraints. Each activity requires some amount of renewable resources (e.g., machines, employees) while every resource has a planned capacity and some energy (i.e., a consumable resource with limits given by 15-minute contracts). The goal is to find a sequence of activities assigned to resources (i.e., a schedule) and capacity of resources with respect to two criteria. One objective is to minimize the earliness/tardiness penalty (costs incurred by completing some of the jobs before or after their due dates). The second objective is to minimize costs connected with the increasing capacity of resources (e.g. hiring more employees or working overtime). Then the solution of the problem might consider a linear combination or a Pareto front considering these two objectives.

We may further extend the problem while considering alternatives or modes of processes to be performed. Eventually, we might investigate the use of Machine Learning to speed up our algorithms, for example, to accelerate the computation of the objective function in the algorithm performing frequent swaps of tasks as it proved to be useful in our prior work dealing with a nurse rostering problem.

Literature
  • Čapek, R. - Šůcha, P. - Hanzálek, Z.: Production Scheduling with Alternative Process Plans, European Journal of Operational Research, Volume 217, Issue 2, March 2012, Pages 300–311.
  • Módos, I. - Šůcha, P. - Hanzálek, Z.: Algorithms for robust production scheduling with energy consumption limits, Computers & Industrial Engineering, Volume 112, October 2017, Pages 391-408.
  • Václavík, R. - Šůcha, P. - Hanzálek, Z.: Roster evaluation based on classifiers for the nurse rostering problem, Journal of Heuristics, October 2016, Volume 22, Issue 5, Pages 667–697

Scheduling algorithms for large-scale applications

Level
Topic of dissertation thesis
Topic description

As the number of jobs and resources grows rapidly in many applications, calculating a Time-Triggered (TT) schedule is becoming computationally difficult. Even for very basic models, these problems are known to be NP-hard. Therefore, for large-scale problems, the first challenge is to obtain a reasonable solution in a reasonable time. The most common approach is to model the scheduling problem using some formalism, usually SMT or ILP, and to find a feasible solution using a general-purpose solver. The downside of this approach is its limited performance. To achieve sufficient scalability, a tailored algorithm must be developed.

We are interested to develop efficient and scalable algorithms that will be able to compute schedules (e.g. Time-Triggered schedules in IEEE 802.1Qbv Time-Sensitive Networks) with tens of thousands of jobs (i.e., messages) spanning hundreds of resources (i.e., communication channels). Besides, the algorithms will be expected to store some valuable information during the search, referred to as a context, which will then be exploited to speed up the process of evolving the schedule in response to changing requirements.

We may further extend our algorithms to handle jointly TT and Event-Triggered (ET) traffic classes, thereby improving the system timing properties. Eventually, we might investigate the use of Machine Learning to speed up our algorithms. Most recently we proposed a deep neural network combined with Lawler's decomposition for the single machine total tardiness problem. The results show that our data-driven algorithm outperformed the former state-of-the-art heuristics, and we see a great potential to extend it to other problems with the known decomposition rule.

Literature
  • Vlk, M. - Brejchova, K. - Hanzalek, Z. - Tang, S.: Large-Scale Periodic Scheduling in Time-Sensitive Networks, Computers & Operations Research, Volume 137, January 2022.
  • Minaeva, A. - Hanzalek, Z.: Survey on Periodic Scheduling for Time-Triggered Hard Real-Time Systems, ACM Computing Surveys, Volume 54, Issue 1, March 2021, Article 23, Pages 23:1-23:32.
  • Bouška, M., Novák, A., Šůcha, P., Módos, I., Hanzálek, Z.: Data-driven Algorithm for Scheduling with Total Tardiness. In: Proceedings of the 9th International Conference on Operations Research and Enterprise Systems, ICORES 2020.