Dissertation theses
Agent heterogeneity in multi-agent models of pedestrian dynamics
Specialist supervisor: Ing. Hana Najmanová, Ph.D., prof. RNDr. Pavel Surynek, Ph.D.
Multi-agent (MA) models of pedestrian dynamics become a promising tool supporting an evacuation analysis in performance-based fire safety design. A pedestrian or evacuee is represented in such model by an agent, which parameters, dynamical and interaction rules are inspired by the physical, cognitive, and psychical processes of people in crowd. Recent studies show that very important but rarely considered aspect influencing the evacuation process is the heterogeneity of the crowd in various levels. Most challenging, and so far poorly discussed, is a simulation of a crowd composed of evacuees with essentially different roles and competences during the evacuation (following or giving instructions, keeping or controlling the formation, etc.) as e.g. evacuation of school (pupils vs. teachers) or cultural event (visitors vs. staff).
Goal of the thesis is to fill in this research gap in several of the following aspects:
- Thorough investigation of the influence of essential agents’ heterogeneity on important characteristics of pedestrian flow and evacuation process in most common MA models (cellular, social-force, or rule based).
- Development of new or modification of existing MA models enabling the above-mentioned hierarchical heterogeneity, supporting inter-agent bonds and crowd formations.
- Organization and analysis of evacuation experiments addressing the above-mentioned issues. Comparison of experiments and simulations, development of metrics quantifying the correspondence of heterogeneity in models and reality.
- Investigation of possible strategies of leading/controlling pedestrians/agents influencing the evacuation process by means of the multi-agent path finding or planning tools.
The work should be consulted with both, fire engineering expert and expert on multi-agent planning processes.